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Chapter 1

Introduction

High frequency electromagnetic analysis of problems involving complex geometry de-
scriptions of the scattering bodies has been of great interest in recent years. Spline
and polynomial type surfaces are commonly used in high frequency modeling of com-
plex structures such as aircraft, ships, reflectors, etc., and is therefore of interest to
develop efficient and accurate solutions for the purpose of RCS and antenna pattern
predictions. Numerical techniques for treating these problems such as Physical Op-
tics (PO) [1] and the Method of Moments (MM) [2], while simple in concept, still
require vast amount of computer resources for even intermediate sized targets. The
use of closed form ray optical solutions, whenever possible, is one way to increase
efficiency and also provide important physical insight into the various scattering and
diffraction processes.

In many instances, high-frequency scattering and diffraction mechanisms can be
described in terms of ray optical fields that behave locally like plane waves propagat-
ing along the trajectories of the Geometrical Optics (GO) [3] and the Geometrical
Theory of Diffraction (GTD) [4]. Although these rather simple ray optical techniques
can be used to solve many complex practical electromagnetic scattering/radiation
problems, they fail to describe the more complicated field behavior inside transition
regions where wave focusing due to higher order phase catastrophes and or changes

from illuminated to shadow zones occur. Removing the errors within these regions



wonld greatly enhance the applicability of GTD as indeed has been shown for its uni-
form version, the so called UTD [5]. The UTD approach for dealing with transitional
field behavior involve;s the use of appropriate transition functions that eliminate the
errors of GO/GTD solutions, and also provide a smooth connection into the regions
where these classical ray optical formulations remain valid.

A common method of analysis for high-frequency scattering and diffraction prob-
lems involves the use of radiation integrals as well as plane wave integral represen-
tations for the fields, with the asymptotic approximations for the various scatter-
ing mechanisms found from the critical point contributions of the integrand. This
method of analysis when applied to a cubic polynomial surface containing an edge re-
sults in a stationary phase integral characterized by two stationary ﬁhase points that
are arbitrarily close to one another orrto an integration endpoint. Uniform asymp-
totic evaluation of integrals with such analytical properties involves the incomplete
Airy function [6] which serves as a canonical integral for the description of transition
region phenomena associated with composite shadow boundaries. Transition regions
of such type result from the merging of the reflection shadow boundary associated
with an edge in the scattering surface, and the smooth caustic of reflected rays aris-
ing from the confluence of the two stationary phase points near a zero-curvature
(inflection) point. When the reflection shadow boundary is not in the immediate
vicinity of the smooth caustic the conventional UTD diffraction coefficient [5] which
involves the Fresnel integral as a canonical function caﬁ be used to effectively de-
scribe the edge diffracted fields. Furthermore, the ordinary Airy integrals and their
derivatives are the appropriate canonical functions for the description of the high-
frequency fields in the neighborhood of the smooth caustic [7]. However, when there
is a confluence of both reflected and caustic type shadow boundaries, neither the
Fresnel integral nor the ordinary Airy integrals adequately describe the transition
region phenomena, and they must be appropriately replaced by the incomplete Airy

functions. Although these functions are not so easily generated [8] as, for example,

! i f il I 1l | u | o = s il
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the Fresnel integral or the complete Airy functions, a method for their eflicient and
accurate computation was recently developed [9] and allows for the formulation of
uniform asymptotic solutions that are useful for engineering purposes.

In this report, an extended UTD solution for the scattering and diffraction from
perfectly conducting cubic polynomial strips is derived and involves the incomplete
Airy integrals as canonical functions. The scattering mechanisms involved are de-
scribed by a new set of uniform reflection, first-order edge and zero-curvature diffrac-
tion coefficients that remain valid inside the transition regions and also provide
smooth connection into the regions where the classic ray optical formulations still
apply. Although additional higher order mechanisms such as creeping waves, double
edge diflraction, and whispering gallery modes may also exist for the geometries con-
sidered, they will not be examined in this report. Also, this new solution is universal
in nature and can be used to effectively describe the scattered fields from flat, strictly
concave or convex, and concave-convex boundaries containing edges. Numerical re-
sults obtained using the extended UTD solution showed excellent agreement with
the method of moments for both polarizations, except for some limited regions in the
non-specular direction for the TE polarization where the higher order mechanisms
become significant.

The outline of this report is as follows: In Chapter 2, a uniform asymptotic
analysis for the plane wave scattering from a perfectly conducting cubic polynomial
boundary containing an edge is presented, and in Chapter 3 the extended UTD
solution for the scattering and diffraction from cubic polynomial strips is formulated.
In Chapter 4, some indicative numerical results are presented and discussed with
their accuracy confirmed via comparison with reference moment method results. In
addition, results obtained using classic UTD are also shown to illustrate the need
for the new solution. Finally, some concluding remarks and the accomplishments of

this work are summarized in Chapter 5.



It is assumed that all fields are {ime harmonic with time dependence ™', which
will be suppressed throughout this report. Also, the medium surrounding the scat-

terers is assumed to be free space.
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Chapter 2

Uniform Asymptotic Analysis

In this chapter, a uniform asymptotic analysis for predicting the scattered fields
from perfectly conducting cubic polynomial strips is presented. The relevant canon-
ical geometry for the analysis that follows is a semi-infinite two-dimensional cubic
polynormal boundary illuminated by a plane wave as shown in Figure 2.1. The scat-
tering mechanisms to be exa.mmed namely specular reflection, zero-curvature and
first-order edge diffraction are illustrated in Figure 2.2. As a plane parametric curve

the boundary C is given by:
Q) =z + jy(e); a<z <0 (2.1)

where
y(z) = ay + a1z + axz’ + axz’. (2.2)
The zero-curvature point, z, is a root of the second derivative of the surface, i.e.,

y"(z,) = 0 and is given by:

. a2
= 2 2.3
zp 30.3 ( )

The scattered fields at any point P away from the surface boundary can be
expressed in terms of the usual radiation integrals over the electric current J, induced

on the boundary by the incident plane wave as follows:

E(P) =~ k2 / [5 % & x Jy(QNHP (kr)dl' (TM case) (2.4)

12

A(P) = 5 / 17,(Q") % 8JHP (kr)dl' (TE case) (2.5)
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Figure 2.2: Scattering mechanisms associated with a cubic polynomial boundary
containing an edge.
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where

r = |QP|l~p-7'(Q)-§ (far-zone approximation),
§ = &cosf+ gsind,
J(Q) = value of J, at any point Q' on the surface,

H&”(kr) = cylindrical Hankel function of the second kind of order zero,

Zy, = 1impedance of free space,
k = wavenumber of free space, and
dl! = line integration element.

In the PO approximation to (2.4) and (2.5), the induced current is assumed to be

given by GO as follows:

J(Q') = (2.6)

- 27 X ﬁ‘(Q'), on the lit portion of the boundary
0, on the shadowed portion of the boundary

in which 7’ is the outward normal to the surface and I-I"(Q') is the incident magnetic

field at Q' that under the plane wave incidence assumption is given by:

_... Z1(5 x §)e* ") (TM case
@)= @ X (TM case) (27)
zeIk(7) (TE case)
where
§ =2cosb +gsinf. (2.8)

Using the assumed current in (2.6) and the large argument form of H32)(kr) given

by: -
125 _.
H®(kr) ~ ;ﬁ; e kT for kr > 1 (2.9)

the far-zone scattered field assumes the form:

U2(p;0,8) = F1/ 25 e00(6',60) e 2.10
2\P 7)—'4: 27I'es'h ’ \/[3 ( )



where e, 1,(8,8) is the angular field dependence and is given by the stationary phase

integral
ean(0,6) = [ fula)e*) da (2.11)
where
dl' ., 8
furle) = T (Q')-{, } (2.12)
#(z) = 7(Q) (5 +3)==zC(#,0)+y(=)S(6,6), (2.13)
C(¢,0) = cosb'+cosf, (2.14)
5(0',6) = sin6 +siné, (2.15)
% = h(z) = 1+ [y'(2)]?, and (2.16)
w(@) = 2L (2.17)

The next step in this procedure is the uniform asymptotic evaluation of e, .(6’,6)

given in Equation (2.11).
2.1 Uniform Asymptotic Evaluation of e,;(6',6)

The integral in (2.11) can be transformed into a canonical form by first expanding

the phase function in a Taylor series around the zero-curvature point z,, i.e.,

Ho) = 8z + (2 — )¢ () + 2T (). (2.18)

Notice that the above expansion is exact since ¢"(z,) = 0 and ¢™(z) = 0 for every

z with n > 3. Next we make the following linear transformation:
#(z) = 7(s) = @+ Bs + 5°/3, (2.19)

where

nd ' (2.20)

p

a = T(O) = ¢(z¥)) 9

B = &) [;;%5] - (2.21)

8
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The proper branch for A depends on the sign of ¢'(z,) and ¢"'(z,), thus

5 { £Ble™s (@) SO p o sz)20 (2.22)
+|0] if ¢"'(z,) >0
where L
8] = 16(2,)] _2 7 (2.23)
- r d’m(mp) .

Also, alternative expressions for a and 3 may be found directly from Equation (2.19),
ie.,

o = o)+ 3 (-0 (224

2

g = ~{3r@ ()} (229

where s, ; = +(—)'/? are the stationary phase points satisfying 7/(sy,2) = 0. Thus,
using Equation (2.19), the scattered field angular dependence, e,(8',6), becomes:

“

ees(8,0) = [ 7 Gunl)e™ ds (2.26)

where

¢ = (a-z,) [ﬂ(”_v)]l (2.27)

2
G,n(s) = f,,h(m)j—::, and (2.28)
dx 2 3

The proper branches for §, and % depend on the sign of ¢"(z,), thus

Lleles i ¢"(z,) <0
€ = ale?s i ¢"(a) , + for aZz,, or (2.30)
zp) > 0

AR

d}m(zzp) — |¢r(a) _ d)l(mp)ll/Z

, (2.31)

|l = la — z,|

2
¢"(zp)




kg

e 3% il ¢"(x,) <0

dr

d ds
-J:E = , and (2.32)
8 - — — -
% if ¢"(zp) >0
dz 2 P
== '4;'"(:5,,) (2.33)

 Next we employ the Chester et al. expansion [10] for the amplitude function in

Equation (2.26), i.e.,
Gon(s) = Y [all(s® + B)™ + bl s(s® + B)™) (2.34)
m=U

and since only the leading terms in the asymptotic expansion of (2.26) will be re-

tained, Equation (2.34) may be written as follows:

Gon(s) = ag" + sb5" + (% + B)gen(s) (2.35)
where
65" = 1Gun(s) + Gunls)], (2.36)
bt = 5if‘[c:,‘,,(s,)—G,,,,(M)], and (2.37)
ale) = S lasl7 A 4 Bl 6 (2.38)

Now, using the far-zone observation approximation and the symmetry of the surface

near and around s = 0 or z = x,, Equations (2.36) and (2.37) simplify as follows:

s d
aU'h ~ Gyn(s12) = for(z12) d—: , and (2.39)
byt~ 0 (2.40)

where

de o M(s1) | 22(=B)2
o=s1 2 B \J ¢"($1:2) - \J (z12) (2.41)

and using Equations (2.32), (2.33), (2.39), and (2.41) we have

{ lag"(e™F if ¢"(2,) < 0

a (2.42)
’ |as® if ¢"(z,) > 0

10
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where

2,31/2 % 'i

“h = T2 = T2 2
lu Ifa,h( ')| ¢"(:l:1,2) lfs,h( ')|)¢"'($p)

Then, using Equations (2.35) and (2.40) e, n(¢’,6) may be given by the following

(2.43)

expression:

e,.,,,,(&’,G) — ejkr(ﬂ) [a:’,h/ ejk(ﬁs-{-.qf*/.’;) ds +/ (82 +ﬁ)g,,h(s)ej"(”"+”n/3) ds] .
Ea . Ea
(2.44)
The integrand of the second integral on the right is regular over the entire path of

integration, thus integration by parts yields

cut(@,0) = 7O [ [ HOH I ds - g, (G 0] 1 0)
’ £a VL
(2.45)
and using Equations (2.19) and (2.35) it simplifies further
" s,h
. oc . 1. . ’ Gn h(ﬁn)

€q 01,9 ~ e]kr((l)a.v.h/ eJk(/3.1+s /) ds 4 e]kr(f,,) [ : a, = . 2.46
H(0) e R R = o)

where the terms of order higher than 1/k have been omitted. Next, we let s = k='/%,

B =k=233 and ¢, = k7'/3¢, in (2.46), thus

e.-,h(G’,G) —~ ejkr(n)k—l/:iaa,h /."oo“ ej(;§v+t“/:s) dt + ejk'r(fu)

a

k—l/:na;.h _ G..,h(fa)]
B+ &7 dkra)]
(2.47)

Finally, the field angular dependence is given by the following expressions depending

on the sign of ¢"(z,) and ¢'(z,):

1. ¢"(x,) < 0and ¢'(z,)20

. —3 X y X s, 43 ]
In this case, 8 = oe™3%, & = (.e3, a)® = |aj"|e”’3 and Equation (2.47) be-
comes:

RSt G fana)
o-) T ke | ¥

e n(0,0) ~ eF 3 g AT (—0, () + eF90

11



2 ¢III(T") ~ 0 and (f”(-”':’)zﬂ »

In this case, B =0, f.n = Cay a:;'h = |a;",;h| and Equation (2.47) becomes:
' oo o1y i | KL funla)

e, g'.6) ~ ekaﬁ(Ip)k'% as,h A o, () + jké(a) . 0 +3d sh
.h( ’ ) l (1} | l( C) € J(U+C3) L ¢I(a)

Both ¢ and (, are real qua,nt:;txies with ¢20 if d)'(m;,)zO and (,20 if a2z,. Ai(o,7)is

(2.49)

the incomplete Airy integral defined by:

Ai(o,7) 2 foc 74223 4 (2.50)

2.2 Total Field Solution

Using Equations (2.10), (2.48) and (2.49), the total scattered field is given by:

1. ¢"(z,) <0

1

UNp) ~ F {ejkd)(rp) eli ks ]a”"’lmi(a &)
: \/2_71. U 1 Sa

+ejk(f’(ﬂ) _— k}_"a:{h EJ% — e—jTﬂ f-‘.h(a‘) e‘j"'/’ (2 51)
jV2r(o +¢2)  V2rk ¢(a) '

with ¢$0 if ¢'(z,)20.

L a0
s 1kd(x e]%k"_’ ahy 3T
Ulp) ~ F {ejkd’( ")——%huh‘m(a, Ca)

+e.7k¢(0) k’(l;'ashle.fg _ e—j% f’-h(a’) e—jkp (2'52)
Ver(o+¢2)  Verk ¢(e) | ] VP

with 020 if ¢'(=,)20.
The F in front of the expressions in (2.51) and (2.52) corresponds to the soft or

hard polarization cases. Notice that the last two terms in Equations (2.51) and (2.52)

12

Bl



rpy
Bl

| I

"y
[

]
A

oA

(]

1

B

I

l

 {BAIH

R ikt

L Hititd

LT

L

are purcly edge diffraction contributions where the first term in (2.51) and (2.52)
appears to be a contribution from the zero-curvature point. In fact, three different
scattering contributions, namely reflection, edge and zero-curvature diffraction are
implicitly contained in the incomplete Airy integral. It is advantageous to separate
the scattering mechanisms, extract the appropriate reflection and diffraction coeffi-
cients, and cast the total solution in a UTD format. In this form, the solution would
be applicable to more general problems and also provide important physical insight
into the individual scattering processes. The details of the separation procedure are

presented in the next chapter.
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Chapter 3

Extended UTD Solution
Formulation

The total scattered field from the semi-infinite perfectly conducting cubic polynomial

boundary of Figure 2.2 can be expressed as follows:

Ui(p) = Ul(p) + U(p) + U(p) (3.1)

where U7, U¢ and U? are the reflected, zero-curvature and edge diffracted field
components. Although additional higher-order mechanisms such as surface waves,
double diffraction and whispering gallery modes may also exist, they will not be
considered in this analysis since the PO approximation to the induced surface cur-
rents does not account for such effects. Before proceeding with the expressions for
each field component, the various field contributions that are implicitly contained
in the incomplete Airy integral are extracted by deforming the original contour of
integration into appropriate steepest descent paths through the critical points of the
integrand. A

First, let’s consider the complex plane topology of the incomplete Airy integral
when the saddle points are real (¢ < 0), as depicted in Figure 3.1. There exist three
cases depending on the location of the endpoint v relative to the saddle points 2

and z;, and Ai(c,7v) may be written as follows:

E(O’,‘)’) = / ej(”2+2:‘/3) dZ+ ej(frz-l»z“/.’l) dZ

v Las

oo exp(Jv)

14
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+ f e Ny iy < —(~0a)'/?,
L3

/ooexv(n’f:s) Gilrz+s/9) g, n eI+ 13) 4,
]1,")

if —(—0)'/?2 <y < (~0)"/? and

_ /oo exp(j) ej(frz-i-z"‘ IR) dz if ¥ > (_U)U2 :
-

(3.2)

(3.3)
(3.4)

Using the definitions for the ordinary and incomplete Airy functions found in Ap-

pendices A and B the integrals in (3.2)-(3. 4) may be expressed in terms of these

functlons as follows
ooc‘(p(]f, ) 2 - o
/ ] e_,((rz-!-‘ /3) dZ — g2(077),
N

/; PRICES VR - r[Ai(e) — jBi(o)],

oo oxp{Ji ,
[T e s = g0,

/’ e+ M, = x[Ai(e) + 7Bi(0)], and
Lay

soexp(yvn) .. 4

PN

(3.5)
(3.6)
(3.7)
(3.8)

(3.9)

Thus, using Equations (3.2)-(3.9), the total scattered field solution in (2.51) and

(2.52) when o < 0 (lit side of the caustic) is given by:

1. ¢"'(z,) £0

Ui(p) ~ :;(\/gei:"kﬂa’-’w{efw(-f')e-f%(-ﬂ““{Ai*(a)- jBi*(0)|u[(=0)'"* = ¢

+ &) T30 [Ai(0) 4 Bi(0)ul~(~0)"* ~ ]}

b ) {e i

Nl [ v Rl ,ca)]

mf¢((>)] }) Jﬁ
2. ¢"(z,) > 0

Up) ~ F (\/ge";k:’» ‘af)‘hl {ejkrb(.r]) ej%(—.-y)a/'z[Ai(U) n jBi(a‘)]u[(—O')I/? _
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Figure 3.2: Complex plane topology and contour deformation for the incomplete
Airy integral when o > 0.

b el AT AT () - jBi(0)ul~(~0)"? ~ Lo}

eJké(a e J(e¢a+C2/3) (e, ¢
' { Ver e [ vt C)]
B e=I% fon(a) }) g Tke
Nore ¢’(a)] 7 (3.11)

g,(0,¢.) if (o < —(~0)'/*
1(0,0) = { ga(0:0) if ~(~0)'/? < G < ()12 (3.12)
81(0,¢) if Ga > (=0)!/?
and u(z) is the Heaviside unit step function. The first two terms in Equations (3.10)

where

and (3.11) represent uniform reflected field contributions where the last two terms
represent edge diffraction contributions.

Next, let’s consider the complex plane topology of Ai(o,v) when the saddle points
are complex (o > 0), as deplcted in Flgure 3.2. There exist two cases dependmg on

the endpoint location relative to the zero- curvature pomt (z = 0), and the incom-

17



plete Airy integral may be expressed in terms of the complete and incomplete Airy

functions in a fashion similar to the previous case, i.e.,

Ai(e,7) = gy(0,7) + 2rAi(e) ify<0,and (3.13)
= g/(o,y) ify>0. 7 (3.14)

Theh; using Equatiitdnrs' (313) and (3.14), the total scattered field of (251) and (2.52)
~when o > 0 (dark side of the caustic) is given by:
1. ¢"'(z,) <0

Uip) ~ F () Vame T kila)"|Ai" (o)u(~C)

kd(a) € 4kh 1h J 164 3 r-

Bz e

2. ¢"(z,) > 0
Uip) ~ ¥ (00 v2red Tkt fa)" | Ai(o)u( ()
. a ely k(‘ ; (o 1
+ elkela) { 1 [ e +e i Ca+<a/3)1d(a, Ca)

) = 519

where

Ii(e:0) = { Bln ) HG 20 @.17)

g, (0,(,) otherwise
In this case the first term in Equations (3.15) and Equation (3.16) represent
zero-curvature diffraction contribution where the last two terms in (3.15) and (3.16)
represent edge dxﬂ'ractlon contnbutlons Notice that the zero-curvature diffraction

contribution is a umform version of the complex ray (evanescent) ﬁeld mterpretatlon

of Tkuno and Felsen [11, 12|, and it appropriately reduces to their expressions when

18
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o > 1. The main advantage of our formulation is of course uniformity, and also
the need for a complex extension of the reflecting boundary and the evaluation of
surface parameters in complex space is avoided.

Another observation concerning the edge diffracted field component of the to-
tal field is that the last term in Equations (3.10), (3.11), (3.15) and (3.16) can

be recognized as the PO half-plane diffraction coefficient, and using the following

expressions:
fule) = Maw(@)-]  p=h@] " (3.18)
3 sin
#la) = ha)(QL): (' +3) = Ha)C(¢ ) (3.19)

it may be written as follows:

e 7% (sing’; sin )
V2rk (cos ¢’ + cos )

where ¢’ and ¢ are the angles of incidence and observation, respectively, measured

D¢ p) = & (3.20)

from the edge-fixed coordinate system. It is well known that the PO diffraction
coefficient does not satisfy reciprocity nor does it satisfy the local boundary condition
on the surface for the TM polarization case. These shortcomings produce errors in
the total scattered field for observation points away from the optical boundaries.
A rigorous method of providing the necessary corrections to the PO approximation
involves the introduction of an additional non-uniform induced current near the edge.
A rather heuristic but simpler approach for improving the PO half-plane diffraction
coefficient is to introduce a pa;ir of édge correction multiplication terms derived by

James [13], i.e.,
C,(¢',¢) = sin(p/2) sec(y'/2), and (3.21)
Culprp) = cos(!/2) csclip2) (3.22)

which correct the PO diffraction coefficient so that it yields the exact diffraction

coefficient outside the optical boundaries. These correction factors reduce to zero

19
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Figure 3.3: Geometry for the reflected field from a cubic polynomial strip.

near the optical boundaries, and fﬁérefore they do not affect the cancellation of
singularities or the compensation of discontinuities in the reflected field components.

A final comment about the total field solution in Equations (3.10), (73.171), (3.15),
and (3.16) is that it remains valid for any value of the cubic polynomial coeflicients
ag, a;, a,, and ay and one can show by carefully taking the appropriété limits that
it reduces to the half-plane solution when a; and a4 go to zero, and also reduces to

the solution for a semi-infinite parabolic screen when a; goes to zero.

~ We are now ready to derive expressions for the individual scattered field con-

tributions from a finite cubic polynomial surface using the expression for the total
field from the semi-infinite surface given in (3.10), (3.11), (3.15) and (3.16) and by
expressing the quantities al”, o and ¢, in terms of the local surface parameters

relevant to each scattering mechanism.

3.1 Reflected Field Solution

The geometry for the reflected field appears in Figure 3.3. The reflected field con-
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tribution consists of two specular components that only exist in the lit side of the

caustic. It is given by the following expression:
Ui (p) ~ Uy (pYulb — zv,) + U7 (p)uler, ~ a) (3.23)

where U;"?(p) are the two specular contributions given by

} : . —jkp

r, FRFQL, )-8 1 . o kFIQL ) €

Uz, 2(p) ~ e " Rs,h( ,rl,z)\/;zg(erl,: )n,( ’rl,q) -8 € * 7P-
(3.24)

R,(Q;,) is the principal radius of curvature at the reflection point given by

N R (z,,

g

R,(Q.. 3.25
Q(Qy,) y”(m”) ( )
and z,,, are the specular points found by
—ay + (‘13 - 4&;(1]
o, = 3.2
z 1,2 2&3 ( 6)

where

g = (848 +af-(8+8§)=0C(0,0)+a58,6), (3.27)

8y = 2a,9-(8'+3")=2a,5(6,6), and (3.28)

a; = 3azy- (8 +38)=23a35(0,6). (3.29)

The quantity R,4(Q;,) is the uniform acoustic soft or hard reflection coefficient that

remains valid as Q] — @, and is given by

) T.(o,) if Ry(Q,,)=>0
Ron(@) = Rap | 07 T AlGH) (3.30)
T (o) i By(@.) <0
where
' 'R:‘h = '¥1, for a ﬁerfé‘c;t'l:y' cohduétiﬁg B:()Jndary, - (3.31)
T.(o,) = ﬁa’l“e'ﬁe"j§”2/7[Ai(—a',.)—jBi(—O'r)], and (3.32)
3ty ~1( Y Ay ar 3
o = [BRF@) -F@- @ 48 (3.33
21
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dark side /

caustic

Figure 3.4: Geometry for the zero-curvature diffracted field from a cubic polynomial
strip.

The quantity 7,(o,) is the appropriate transition function that cancels the GO field
singularity at the caustic. Also, when the specular point is far removed from the zero-
curvature point (observation in the deep lit side of the caustic), o, >> 1 and using
the large negative argument forms of the ordinary Airy functions (see Appendix A)
we have that T,(o, > 1) ~ 1 and R, — R, so that the extended UTD reflected
field solution of Equation (3.24) reduces to the usual GO expression for the reflected
field.

3.2 Zero-Curvature Diffracted Field Solution

The geometry for the zero curvature diffracted field is shown in Figure 3.4. The

zero-curvature diffracted field contribution exists only in the dark side of the caustic
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and compensates the reflected ficld discontinuity. Tt is given by

e__jkp

VP

Uz(p) ~ @5y (Q! )t (204 u(z, — a)u(b - z,,) (3.34)

where D;,(Q)) is the scalar zero-curvature diffraction coefficient and is given by
x ., 1 2 %
Don(Q)) = FV2melTks ‘Wl L(¢', p)Ai(o.) (3.35)
v
where
S2 r’ + C? /’ I
L(¢' ) = \/ (’(,0 ) (‘,P SO)I 5 |cos (‘P ‘P)' (3.36)
c1C (¢, ) — c2S(¢', )|V 2
. ¥'(z,) 1
th = =—
with ¢, h(z,) and ¢, A(z)
is the diffraction coeflicient angular dependance, and
| 2 P C(¢, ¢)]
o, = k3 . 3.37
y(z)| leiCle0) — S P (337

Notice that the zero-curvature diffraction contribution is significant near the caustic

and decays exponentially away from the caustic as Ai(o. > 1) — 0.

3.3 First-Order Edge Diffracted Field Solution

The geometry for the edge diffracted field is illustrated in Figure 3.5. The edge
diflracted field contribution consists of two components (one from each of the two

edges) and is given by

Ui(p) = Uf(p) + U(p) (3.38)
where
Url ( ) KFN(QL )& D (Ql ) JkF(QY )57 e~ (3 39)
zu,bp ~ € ' a,b"’ : a e r a,b"’ —_— .
| ,h b ﬁ
and D, ,(Q; ;) is the scalar uniform edge diffraction coefficient that remains valid as

wb — Q. It is comprised of two parts, i.e.,
D n(Qup) = DIR(QLy) + D; 1 (Qz) (3.40)
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Figure 3.5: Geometry for the edge diffracted field from a cubic polynomial strip.
where D" W(Qhy) is the half-plane diffraction coefficient given by

—e 73 Son b~ Pad - Son b + Pap
D) - o [ (B 22t weee (2322 | - o

and D}, (Q.,,) is a term that provides curvature correction and is given by

1

ké A T LR Tu(Oapy Cap) i y"(a,0)§- (3" +57) <0
1h( ub)— " b Ld(sou,b"Pﬂ.b) }
y"(a,b) T;3(Cupr Cap) if y"(a,b)§ - (3" +37) > 0
(3.42)
where , o o o
C2 @l gy Pap) + S*(Plapy Pas) =
/ f a,b B ab : Pab Pa,b
ah) = Yab T2%11(3.43
LileonrPat) = (3.0 o) — 425 (g @)V ( 2 ) (3:43)
. * . 2
Ti(o,|(]) = —2og + eTKHIRS) gi(o, I} if o+ 1C] 507 , (3.44)
o + (] gi(o () o +[(2P>0
Tu(o,—ICl) = —TJ(U,ICI), (3.45)

‘ |dsC(#hpr Pas) + diS(Paps Pas)l
"’(a y"(a,b)| [diC(¢p Pab) — 4506y pas) 11

:cj(s + 8+ y'(z,)d (5" + 59)
sgn [ (a8 (& + 89 } ) (3.46)

N

U'a,b = k
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ap = ikﬁly(a,b)—y(ﬂcn)rﬂ‘ l ‘

ylll(a’ b)
|dlC(‘P:1,b’ ‘Pu‘b) - d2S((P:1‘b,‘Pa.b)‘% j a,bz%, (3'47)
dap = %1, ' (3.48)
y'(a,b)
= 4
d ih(a,b) , (3.49)
1
dy = m ) (3.50)
_ 14 9(a,0)y'(=)
dy, = =+ h{a,b) , and (3.51)
y'(a,b) — (=)
= . .52
d h(a,b) (3:52)

Notice that the curvature correction part of thé uniform edge diffraction coefficient in
Equation (3.40) provides significant contribution near the reflection shadow bound-
ary (RSB) where o + (2 = 0. In fact both the half-plane and curvature components
in (3.40) become singular near the RSB, however these singularities cancel each
other out and the total diffraction coefficient remains finite. Away from the RSB
(o + ¢ > 0) the curvature correction component reduces Lo zero as the diffraction
transition function Ty(c,¢) — 0, and thus the edge diffraction solution reduces to

the half-plane solution as it should.
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Chapter 4

Numerical Results and Discussion

In this chapter, some numerical results for the scattered fields from a general cubic
polynomial strip are presented. The scattering geometry and the relevant parameters
are illustrated in Figure 4.1. The accuracy of the extended UTD solution is verified
via comparison with method of moments results. Also, some results obtained using
classic UTD are shown and illustrate the need for the new solution.

The first example considered is a cubic polynomial strip with a, = 2.0, a, = 0.5,
a; = 0.1A7', a3 = 0.1A7%, @ = —1.5X, and b = 1.5A. In this case both edges
are far removed from the zero-curvature point and thus the two reflection shadow
boundaries and the caustic of the reflected rays are clearly distinct. Figure 4.2 shows
a plot of the magnitude of the various field contributions to the total field for the
TM polarization case and an angle of incidence §' = —45°, Notice that the reflected
field component exhibits a total of three discontinuities. The first discontinuity
occurs across the caustic of the reflected rays at § ~ —82° and is compensated
by the zero-curvature diffracted field. The second discontinuity occurs at the RSB
assocjated with the edge @, at § ~ —50° and is compensated by the edge diffracted
field from @,. Similarly the third discontinuity occurs at the RSB associated with
the edge @, at § ~ —23° and is compensated by the edge diffracted field from Q.
Also notice that the two edge diffraction terms become singular near the incidence

shadow boundary (ISB) at § = 135°; however, they combine to give a finite result.
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Figure 4.1: Scattering geometry and relevant parameters for the numerical results.
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Figure 4.3 shows a plot for the total scattered field in terms of histatic echo width
for the TM polarization. The extended UTD result shows excellent agreement with
the method of moments where classic UTD gives an erroneous result near the caustic
al § =~ —82° and in both the lit and dark sides. This is expected since the classic
UTD formulation does not contain zero-curvature diffraction information in the dark
side and also uses the non-uniform GO expression for the reflected field contribution
in the lit side. Figure 4.4 shows results for the bistatic echo width for the TE
polarization. Again the extended UTD result shows good agreement with method of
moments. The discrepancies for observation directions near grazing are attributed
to higher order mechanisms missing from the total field. These higher order eflects
such as edge exited surface rays and whispering gallery modes are stronger for this
polarization since the graz}ng fields do not vanish on the bounda;y as is the case for
the TM polarization. The failure of the classic UTD near the caustic is again clearly
illustrated. Figures 4.5 and 4.6 show plots of the monostatic echo width for the
TM and TE polarizations, respectively. The extended UTD solution gives accurate
results for the monostatic case also, except for the regions where the higher order
mechanisms become significant. Contrary to the classic UTD result, the extended
UTD solution remains finite and continuous across the caustics.

For the second example we consider a cubic polynomial strip with a, = 2.0A,
a; =0.5,a; =0.1A7", a3 =0.1A7?, a = —0.33), and b = 1.5). In this case, the edge
(. coincides with the zero-curvature point @, and thus the RSB and the caustic of
the reflected rays coalesce to form a composite shadow boundary. Figure 4.7 shows
a plot of the bistatic echo width for the TM polarization and an angle of incidence
0" = —45°. The classic UTD result exhibits a singularity at the RSB associated with
edge Q,, where the extended UTD result remains finite and is in excellent agreement
with the reference solution. Figure 4.8 shows a plot of the monostatic echo width for

the same geometry. Again the non-uniformity of the classic UTD solution is clearly
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evident where the éxtendvd U'TD solution remains valid across the RSB and reduces
to the classic UTD result away from the transition region.

The remaining two examples illustrate the universal nature of the extended UTD
solution. For the third example we consider a cubic polynomial strip with a, = 2.0},
a; = 0.5, a; = 0.127", a3 = 0.0A7%, a = —0.33), and b = 1.5A. This of course
corresponds to a parabolic screen and is well known that classic UTD gives accurate
results. In this case the zero-curvature point theoretically moves to negative infinity.
Figure 4.9 shows a plot of the monostatic echo width for the TM polarization and
the extended UTD solution remains valid and shows excellent agreement with the
reference solution.

For the final example we consider a flat strip by letting both the quadratic and
cubic coefficients go to zero. Figure 4.10 shows a plot of the bistatic echo width for
the TM polarization and an angle of incidence 8’ = —45°. The extended UTD solu-
tion remains valid for this special case also, and clearly demonstrates its flexibility
for treating general surfaces that are highly curved, slightly curved, or completely

flat.

29



40

3.2

Reflacted

Zero-curvoture difiracted
Edge diffrocted (Qo)
Edge diffrocted (Qb)

ro
o
]

,_.
=
|

Field Magnitude

0.8

Figure 4.2: Scattered field contributions (TM polarization case) from a cubic polyno-
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Chapter 5

Summary and Conclusions

We have presented an extended UTD solution for the scattering and diffraction
from cubic polynomial boundaries containing edges. This new solution involves the
incomplete Airy integrals as canonical functions and effectively describes the tran-
sitional field behavior associated with composite shadow boundaries and caustics of
the reflected rays. The total solution is presented in a ray optical format by deriving
the appropriate uniform reflection, zero-curvature and edge diffraction coefficients
that remain valid inside the transition regions, and also provide smooth connection
into the regions where the classic ray optical formulations remain valid.

It was shown by comparison with a reference method of moments solution that
the extended UTD TM polarizalion solution yields excellent results. The TE polar-
ization solution also showed good agreement with the reference solution although it
would benefit from the inclusion of higher order effects such as edge excited creep-
ing waves, double edge diffraction, and whispering gallery modes in certain regions
where grazing fields exist. The failure of classic UTD solution to describe the scat-
tered fields near caustics of the reflected rays and composite shadow boundaries was
also clearly illustrated. The universal nature of the extended UTD solution was
demonstrated by considering examples of a parabolic screen and a flat strip. In both

special cases, the new solution gave excellent results. Therefore, the extended UTD
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solution can he nsed to effectively describe the scattered fields from general curved

surfaces ranging from strictly concave or convex, concave-convex, or completely flat.
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Appendix A

Ordinary Airy

The ordinary Airy functions salisfy the following differential equation:

Functions

y'(0) - oy(c) = 0

which has two independent solutions, Ai(¢) and Bi(c).

given by

/ J(oz+22/3) dz

1

27

i/ eiloz+2/3) g,
2 Laa+1Lya

(A.1)

In integral form they are

(A.2)

(A.3)

where the contours of integration Ly, L,3 and Ly, are shown in Figure A.1. For

small arguments they can be computed using their ascending series form [14], i.e.,

Ai(e) = cf(o) - cag(o)
Bi(o) = v3leif(o)+ cag()]
where
fle) = 1+%a“+1—ga“+1—°—3—'—zag+---
2, 2.5, 2.5.8,,
gle) = a+za +—7-0 +—16—a + -
¢ = Ai(0) = Bi(0)/v3 = 372/%/T(2/3)
c2 = AV(0)=Bi'(0)/v3=3"7/T(1/3).
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(2) (1

Figure A.1: Contours of integration for the ordinary Airy Functions.
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Their large argument forms are given by

Ai(o) ~ —;—w"/"'a"/"e"%”m (larg o] < 7)

Ai(-o) ~ 7 V2% Ysin <§a"/2 1 %) (largo| < 27/3)
Bi(o) ~ L VAP L (Jargo] < 7/3)

Bi(—o) ~ 7 2" "'cos (203/2 + g) (largo| < 2m/3).

Complete asymptotic expansions may be found in [14].
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Appendix B

Incomplete Airy Functions

The incomplete Airy functions satisfy the parabolic differential erqua'tion' applied by
~ Fock [15] and others to the study of fields near the surface of convex diffracling

bodies, i.e.,
0? .0
[ﬁ‘”‘]a—,y] y(o,7) =0 (B.1)

which has three independent solutions, g,(7,7), ¢ = 1,2,3. In integral form they are

given by

oc exp(Jvi)

g.(o,7) =/ et gy §=1,2,3 (B.2)

~

where the contours of integration are shown in Figure B.1. The functions g, and g,

can be obtained from g, and the ordinary Airy functions as follows:

g:(7,7) = g(0,7) —27Ai(s), and (B.3)

g8:(0,7) = 8i(0,7) — 7[Ai(e) + jBi(s)]. (B-4)

For small values of #, g, can be computed using its ascending series form [9], i.e.,

gi(,7) = f an(1)o” | (B.5)
where
a(y) = g(0,7) =37 T(1/3,-57/3), (B.6)
a1 = g(0,9) = ~eTI T3, 51" 3), (B.7)
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Figure B.1: Contours of integration for the incomplete Airy Functions.
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az(‘)’) = ia,('Y) (B'R)

_ an=s(y) +dana(7)
an(v) = n(n =) , n>3 (B.9)

and I'(z,y) is the incomplete Gamma function. The asymptotic forms of g, are given

by

j 102 3/
gi(o7) ~ me’( ) (v > lol'?) (B.10)
_J (_ )1/2 F'( 4
~ i ) in
g|(677) ( U ]/' [\/_e u( 7’) 2117 —a € ]
1[ 2 1 NN
] Lw - n(—a)‘/"] ST (el (B
where
2 2]’ 1/2 :
n=x% [67 +7°/3 + 5(—0)" ] ;o v2(=0) (B.12)

and F(z)is the Kouyoumjian-Pathak transition function [5]. Complete asymptotic

expansions for g, along with some representative plots may be found in [9].
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